Search results for "RNA–DNA hybrid"

showing 2 items of 2 documents

Molecular and physiological consequences of faulty eukaryotic ribonucleotide excision repair

2019

Abstract The duplication of the eukaryotic genome is an intricate process that has to be tightly safe‐guarded. One of the most frequently occurring errors during DNA synthesis is the mis‐insertion of a ribonucleotide instead of a deoxyribonucleotide. Ribonucleotide excision repair (RER) is initiated by RNase H2 and results in error‐free removal of such mis‐incorporated ribonucleotides. If left unrepaired, DNA‐embedded ribonucleotides result in a variety of alterations within chromosomal DNA, which ultimately lead to genome instability. Here, we review how genomic ribonucleotides lead to chromosomal aberrations and discuss how the tight regulation of RER timing may be important for preventin…

Genome instabilityRibonucleotideDNA RepairDNA repairDNA damageRibonucleotide excision repairRibonuclease HContext (language use)ReviewBiologyGenomic InstabilityGeneral Biochemistry Genetics and Molecular Biology570 Life sciences03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAnimalsHumansMolecular Biology030304 developmental biology0303 health sciencesGeneral Immunology and MicrobiologyGeneral NeuroscienceRNA–DNA hybridDNA Replication Repair & RecombinationEukaryotaDNAtopoisomerase 1ChromatinChromatinCell biologychemistryribonucleotide excision repairGenetic FitnessRNase H2030217 neurology & neurosurgeryDNA570 BiowissenschaftenThe EMBO Journal
researchProduct

Npl3 stabilizes R-loops at telomeres to prevent accelerated replicative senescence.

2019

Abstract Telomere shortening rates must be regulated to prevent premature replicative senescence. TERRA R‐loops become stabilized at critically short telomeres to promote their elongation through homology‐directed repair (HDR), thereby counteracting senescence onset. Using a non‐bias proteomic approach to detect telomere binding factors, we identified Npl3, an RNA‐binding protein previously implicated in multiple RNA biogenesis processes. Using chromatin immunoprecipitation and RNA immunoprecipitation, we demonstrate that Npl3 interacts with TERRA and telomeres. Furthermore, we show that Npl3 associates with telomeres in an R‐loop‐dependent manner, as changes in R‐loop levels, for example, …

SenescenceProteomicssenescenceR-loopNpl3BiologyBiochemistryChromatin Epigenetics Genomics & Functional Genomics03 medical and health sciences0302 clinical medicineReportGeneticsMolecular BiologyCellular SenescenceTelomere Shortening030304 developmental biology0303 health sciencestelomereR‐loopRNAChromosomeRNA–DNA hybridTelomereCell biologyRna immunoprecipitationR-Loop StructuresChromatin immunoprecipitation030217 neurology & neurosurgeryBiogenesisReportsEMBO reports
researchProduct